

Mars Sample Return Capability Development: Mars Ascent Vehicle and Mars On-Orbit Rendezvous

Sept 29, 2017

Chad Edwards **Program Formulation Office** Mars Exploration Program Office Nov 29, 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged

(chad.edwards@jpl.nasa.gov)

Predecisional information, for planning and discussion only

Executive Summary

- Mars Ascent Vehicle and Rendezvous are key capabilities that would be needed for Mars Sample Return
 - A Sample Retrieval Lander's MAV would launch an Orbiting Sample (containing collected samples) into stable Mars orbit
 - A Sample Return Orbiter would perform on-orbit Rendezvous w/ OS for Earth return
- Focused technology developments have advanced the maturity of the MAV and Rendezvous capabilities
- Future developments would establish readiness for SRL/SRO launch as early as 2026

Outline

- Notional MSR Campaign Overview
- Capability Development Status
 - Mars Ascent Vehicle
 - Orbiting Sample
 - Fundamental interface between an SRL and an SRO
 - Mars On-orbit Rendezvous concept
- Summary

MAV Technology Development

MAV Concept Overview

Driving MAV Requirements:

- ~300-400 km, "due east" circular orbit
- · 12 kg Orbital Sample Canister Payload
- Launch from potential M2020 Landing Sites
- 9 months surface survivability with SRL support

- MAV Navigation Initialization
- Erector and Initial Launch Stability

Mars Ascent Vehicle 2015 Case Studies

- JPL/MSFC/LaRC carried out trade study in FY15 of MAV implementation options
 - Solid-Solid two-stage
 - Liquid bi-prop SSTO
 - Hybrid SSTO
- Based on propulsion performance and thermal accommodation, Hybrid SSTO option selected as current focus

2015 MAV Architecture Study

GLOM: Gross Liftoff Mass (CBE values shown) AFT: Allowable Flight Temperature SSTO: Single Stage to Orbit

Broad study of MAV architectures has led to the current Hybrid SSTO approach

MAV Reference Design

- Continued Study from 2015...
 - Added Subsystem Maturity and Fidelity
 - Validated Single-Stage-To-Orbit Design
 - Target Orbit 350 km @ 18° Inclination
 - 12 kg OS Capability (31-Tubes)
 - Length: 2.4 m x Diameter: 0.57 m
 - GLOM Range: 290-305 kg (w/ 50% margin)
 - Varies with launch uncertainties
 - Mass Fractions
 - Propulsion Dry Mass: 10%
 - Non-propulsion Dry Mass: 12%
 - Oxidizer Mass: 63%
 - Fuel Core Mass: 14%
 - Helium Mass: <1%

GLOM Gross Liftoff Mass

LITVC Liquid Injection Thrust Vector Control

OS Orbiting Sample

RCS Reaction Control System
TPS Thermal Protection System

Hybrid MAV Technical Maturity

Subsystem	Maturity	
os	Significant Early Work and Prototyping Completed	O
Nose & Structure	Standard Flight Engineering	
Avionics	Standard Engineering, Based on Europa Lander	
Prop Tanks	Standard Flight Tank Engineering	
Prop Components	Valves and Regulators are Long Lead Developments	—
Hybrid Motor	Technology Development Underway	0
RCS Components	Standard Engineering	
LITVC	Technology Development Underway	0

High Maturity

Advanced Engineering

Technology Development

GLOM Gross Liftoff Mass

LITVC Liquid Injection Thrust Vector Control

OS Orbiting Sample

RCS Reaction Control System
TPS Thermal Protection System

MSFC SP7 Fuel Grain Work

MSFC has developed a robust and repeatable fuel grain manufacturing technique

MAV Testing Progress - SPG

Complete

Motor 1: Verify ignition of desired propellant combination at scale.

Oct 5 & 13, 2017

Motor 2: Extend burn duration (>20 s) and work on stability

November 2017 (in progress)

Motor 3: Burn fuel grain to completion, restart at similar conditions to 2nd burn on MAV, extend burn durations, reduce insulation mass

December 2017

Motor 4: LITVC demonstration

Motor 5: Burn fuel grain to completion, extend burn durations

January 2018

Motor 6: Full duration burn with a restart (motor inspection between burn 1 and 2)

Motor 7: Full duration burn with a restart (no outside intervention)

MAV Testing Progress – Whittinghill

Complete

Heavy Weight Motor 1 (two burns):

- Smooth and rapid ignition
- Establish SP-7 regression rate at full scale
- Demonstrate smooth combustion
- Demonstrate high c* efficiency
- Obtain initial LITVC data

Heavy Weight Motor 2:

- Burn motor on peak O/F
- Increase burn time (~60 sec)
- Demonstrate high c* efficiency with minimal system impact
- Investigate alternate injector patterns for more benign fuel impingement effects
- Continue acquiring LITVC data

Flight Type Motor 3:

- Investigate lower injector deltaP for (flight) He conservation
- One burn, near full duration
- Continued LITVC

Flight Type Motor 4:

- Full impulse for MAV mission
- C* efficiency > 0.95
- High Fuel utilization
- Remote re-start, 2 burns on a MAV mission profile.
- Continued LITVC

January 2018

December 2017

November 2017

(in progress)

MAV Technology Development Status

OS Concept

Orbiting Sample (OS) Concept Overview

- The OS provides a container to securely hold and protect the M2020 Sample Tubes (nominally 31) for return to Earth
 - Mars atmospheric samples are also contained in the OS and returned to Earth
- Orbital Sample (OS) interfaces directly with both SRL/MAV and SRO elements of MSR
- The OS with Sample Tubes must withstand environments imposed by SRL, SRO, EEV

Current OS Reference Design

Engineering OS ready for impact testing

OS Architecture and Design Approach

OS Concept

- 31 tube slots, central rod for load support
- 2 air sample tanks with manual valves
- Assembled at Mars with aluminum foam to provide tube preload for EEV landing

Surface

 Sandblasted gold meets thermal, albedo, & specular reflectance requirements

Mass & diameter

- Mass ≤ 12 kg
- Diameter ≤ 28 cm

Rendezvous Concept

Rendezvous Concept Overview

Rendezvous Concepts: MSR vs Earth-Orbit (e.g., ISS)

- Many commercial and international partners have experience with rendezvous at the ISS
- The main new challenges for a potential MSR:
 - Long range acquisition of the OS (this is done by GPS and ground sensing for ISS)
 - Completely autonomous terminal phase (round trip light time too high for human-in-the-loop)
- However, many aspects are easier:
 - Because the OS is a sphere, its attitude is not relevant for rendezvous
 - Because the OS is small, there are no "keep-out corridors" complicating the approach and abort vectors

Driving Rendezvous Requirements

OS:

- Diffuse Sphere
- Diameter = 28cm
- Albedo: ≥ 0.3
- MAV Orbit:
 - Low Mars Orbit, circular
 - Unconstrained beta angle
 - Inclination: ±1° (3σ)
 - Semimajor axis: ±32 km (3σ)
- Capture Vector (3σ):
 - Position: ± 10 cm
 - Velocity: 5 ± 1 cm/s
 - Direction: ± 5°
- System Considerations:
 - Remain fail-safe until terminal phase
 - Single-Fault Tolerance

Notional MAV Launch Sequence

Event	Time	Event	Time
1 MAV Ready for Launch	L-2d	5 Ascent Coast Phase	L+15m
2 MAV-Orbiter In-View (Go / No Go)	L-20m	6 2nd Burn / OS Separation	L+16m
3 MAV Launch	L-0	OS Passes under Orbiter	L+15h*
4 Ascent 1st Burn	L+2m	OS Occulted by Mars	L+39h*

Rendezvous Sensor Domains

Sensor	Max Range	Min Range	FOV	Aperture	Detector	Accuracy	Phase Angle
NAC Narrow Angle Camera	>3,500 km	10 – 50 m	5° – 8°	5 – 10 cm	Existing	<35 µrad	< 90°
MAC Medium Angle Camera	>1,000 km	1 – 10 m	10° – 60°	3 – 5 cm	Existing	<500 µrad	< 90°
LIDAR	1 – 10 km	1 – 10 m	~20°	~5 cm	Existing	~3 mrad Range: ~10 cm	All
WAC Wide Angle Camera	100 m – 1 km	0 – 1 m	60° – 120°	1 – 5 cm	Existing	~1 mrad	< 90°
LWIR Long Wave Infrared	200 m – 2 km	0 – 1 m	60° – 120°	2 – 5 cm	Existing	~3 mrad	All

Reference Sensor Suite

Narrow Angle Camera

 Provides initial detection of OS at max. range (~3,500 km)

Medium Angle Camera

- Maintains visual lock during approach, provides relative navigation information
- Can detect OS at long range (>1,000 km) in case NAC fails

Wide Angle Cameras

 Stereoscopic view of the OS at terminal approach, and covers a wide swatch of sky to provide situational awareness

Example Hardware:

- WAC = M2020 EECAM Build-to-Print
- NAC and MAC use EECAM detector and electronics, but with larger optics
- All 5 cameras: ~10kg, 15W

SEP vs Chemical Orbit Matching

		3σ Values Nominal Ops			3σ Values Contigency Ops		
Propulsion Option	Isp [sec]	Time [days]	Delta V [m/s]	Propellant [kg]	Time [days]	Delta V [m/s]	Propellant [kg]
Chemical	230	4	78	106	40	100	136
SEP	2600	25	233	28	53	341	40

(Contingency scenario corresponds to failure to detect OS prior to first occulation, requiring 10-day limb-scanning period)

- Both Chemical and SEP propulsion options can meet MSR orbit matching needs for OS Rendezvous
 - Note: SEP case corresponds to highacceleration SEP configuration, consistent with a fast-return MSR orbiter optimized for speed
- Key trade is between time-tocomplete vs. propellant mass
 - SEP takes longer, but has a significantly lower propellant cost than Chemical

Conclusion

- Extensive MAV trade studies have established a Hybrid Propulsion, Single-Stage-to-Orbit MAV reference design for potential MSR
 - JPL/MSFC team working with industry partners to fully mature MAV technology to TRL 6 by 2022
- The Orbiting Sample (OS) the physical interface between MAV and SRO – has a mature conceptual design
 - Fully incorporates M2020 sample tube design
- The SRO-OS Rendezvous function is well understood
 - Simple passive-imaging sensor suite is fully capable of supporting OS detection, approach, and terminal rendezvous phases

Key MSR technologies are on track to support SRL/SRO launch as early as 2026

Backup

Capture Technology Development

OS Capture Concept Overview

- Function: Capture the OS in Mars orbit
- Multiple capture technologies have been successfully demonstrated
 - Bladed Capture
 - Capture Arm
 - Flux Pinning
- ROCS Capture Lid reference concept provides
 - Containment of OS and dust
 - Eliminates the need to simulate contact dynamics for V&V analysis and testing
 - Protects containment hardware from OS during capture
- Plan for TRL 4 end-to-end prototype demonstration in FY18

Bladed Capture Concept

Concept Overview

- Twin sets of blades rotate inward to cage the OS before it fully enters the Capture Cone
- Additional blade rotation guides the OS into the Capture Cone

Evaluation

Pros:

- Large capture volume relative to stowed volume
- Small rotation (~30 degrees) required to cage the OS
- Single-fault tolerant
- Fully constrains the OS translation and can insert the OS into next subsystem

Cons:

Does not control debris propagation

Capture Arm Concept

Concept Overview

- 3-DOF Capture Mechanism cages the OS in Capture Cone
- Further motions feeds the OS into the Capture Cone
- Capture Mechanism can provide a linear motion for containment vessel assembly around the OS

Evaluation

Pros:

- Large workspace
- Provides linear motion for containment vessel assembly

Cons:

- Higher actuator count
- More complex motor control

Flux Pinning Concept

Concept Overview

- Type-II superconductors are cooled below -185°C, during which magnetic flux lines can be "pinned" within the superconductor at a fixed position and orientation
- OS populated with surface permanent magnets can be captured by the cooled superconductors via flux pinning

Configuration

Evaluation

Pros:

- Deterministic
- No mechanisms
- Mechanical interaction with the OS
- Can also provide orientation

Cons:

- Requires magnetic shielding in the OS to protect the samples
- Requires cryocoolers
- · Limited 1 G testability

CONOPS:

Bio-containment Technology Development

Biocontainment Concept Overview

- Biosealing comprises sub-elements of the Rendezvous and OS Capture System (ROCS):
 - Breaking-the-chain of contact with Mars (BTC)
 - Sealing a primary containment vessel (PCV)
 - Sealing a redundant secondary containment vessel (SCV)
 - Transferring the Contained-OS to the EEV (ERC)
- Studied several options and are focusing on a brazing system for simultaneous BTC and PCV sealing
- An o-ring or melt seal is used for SCV sealing
- Brazing system technology development (currently at quarter scale) is showing reliable results

ROCS Containment System Concept

Recent Technology Development

- Pursued multiple biocontainment technology candidates under Mars Program funding in FY14-17
 - Selected Brazing as primary BTC technology based on maturity and BTC performance
 - Key factor: assured sterilization
 - Continuing work on Bagging as alternate approach
 - Continue work on Plasma
 Sterilization as a potential
 supplement to BTC systems

Brazing Concept Overview

Finite Element Thermal Modeling of Braze Process

FY17 Quarter-Scale Brazing Tests

EEV Technology Development

Earth Entry Vehicle Concept Overview

The Earth Entry Vehicle is a simple & reliable ballistic reentry vehicle for planetary sample return missions

- 1. No complex mechanisms
- Stable aerodynamic shape from hypersonic thru sub-sonic
- 3. No parachutes
- Redundant thermal protection systems
- 5. Multiple layers of energy absorbers
- Robust & redundant containment vessels for planetary protection
- 7. 5-sigma landing ellipse fully within a controlled site

Different robotic assembly methods and EEV designs currently in trade

Advanced FEA used to characterize EEV behavior to nominal and off-nominal scenarios

Current reference EEV concept

Soft Soil Impact Testing

The 1300 G OS load requirement was validated with impact testing and analysis

Impact tower constructed at JPL

• 26 m tall truss – frame tower with pneumatic acceleration system

 15 kg – 140 kg penetrometers tested at up to 140 kJ impact energy

FEM validated against 27x soft soil impact tests

Pen. I.D.	Mass [kg]	Orientation [°]	Vel. $\left[\frac{m}{s}\right]$	Energy [kJ]
SC-A	41.7	30	43.5	39.5

Reference C/C EEV Concept

This concept is designed to address the containment assurance issues identified in the PRA

1) MMOD Risks, 2) Aerostability Risks, & 3) Landing Risks

Key Benefit: All components outside of the CAM can withstand high heat, therefore 'TPS failure' i.e puncture of the C/C heat shield is unlikely to result in subsequent runaway failure modes.